The Alphabetic Code

 the interface between oral and print language
Slides Available for Download at:

https://www.theliteracybug.com/s/Mastering-the-Code.pdf

IHE

Literacy bug Objectives

- To illustrate why learners must develop an understanding of patterns in their own speech (e.g. phonemic awareness) in order to reliably recognise sound-letter patterns and understand how words work;
- To outline key elements of "the code", such as phonemic awareness, phonemic knowledge, letter-sound correspondence, orthographic patterns, morphological patterns and automatic word recognition and construction skills;
- To emphasise the ultimate goal: for learners to execute the code and word recognition with sufficient automaticity so as to facilitate more complex acts of comprehension and composition; and
- To understand that language skills, such as vocabulary and syntactic competence, become stronger predictors of reading comprehension as word reading skills are consolidated.

Contents - Mastering the Code

1. Introduction
2. Adam's Model of the Reading System (1990)
3. Dorsal-Ventral Shift Hypothesis (2017)
4. Elements of the Code

5. Conclusion

Please Note (before we begin):

This presentation does NOT explore recommended teaching activities in any detail. Those topics/issues will be covered in other presentations. Instead, this presentation places code-based skills within the context of language and literacy development.

Please explore and enjoy!

The alphabetic code is the interface between oral language and print language ... and so ...
"The beginning reader's initial task is to learn how the spoken language they know relates to the written code they are learning." (Seidenberg, 2017, p 22)

Bringing print and speech into alignment makes reading feasible. (Seidenberg, 2017, p. 40)

The Language to Literacy Continuum

https://youtu.be/jj2rBxKRZSc

KEY POINTS:

1. Developing language skills is key, including vocabulary, syntactic competence and discourse development.
2. Of equal importance is the development of phonemic awareness, which is the ability to detect sounds with words, such /b/ + /a/ + /t/). It is significant because (a) the skill isn't necessarily acquired as part of language development and (b) the skill is essential for acquiring code-based knowledge.
3. One requires sufficient practice to become proficient with reading and writing words. Matching sound-letter patterns is only one aspect to form words. A learner must also navigate and remember the patterns, rules and exceptions in English orthography.
4. Rapid automatic word recognition is a key to fluency, and - consequently - to comprehension.
https://youtu.be/jj2rBxKRZSc

The Language System

"We read with our eyes, but the starting point is speech." (Seidenberg, 2017, p 21)

Seidenberg, M. (2017). Language at the speed of sight: how we read, why so many can't, and what can be done about it. New York: Basic Books.

"Speech is messy. Producing a coherent message is a complex action: deciding what to say, picking the words and grammatical structures that express the intended meaning, loading the program to articulate the sequence of words, and running the program, all done on the fly."
(Seidenberg, 2017, p 24)

Seidenberg, M. (2017). Language at the speed of sight: how we read, why so many can't, and what can be done about it. New York: Basic Books.

The Reading System (Adams)

Sense and Meaning

Imagining / Conceptualising
Attention Switching
[To prepare for literacy] spoken words had to be treated as consisting of component parts [or sounds], which ... we now consider an ordinary, teachable aspect of learning to read: phonological awareness [and processing. (Seidenberg, 2017, p. 63)

Verbal Rehearsal
Working Memory

Phonemic Awareness

The Reading System (Adams)

The Reading System (Adams)

The Reading System (Adams)

"I am eating a lovely bowl of cereal with my spoon."
"Learning to read is the process of acquiring the several types of statistical knowledge that support rapid and efficient comprehension, starting with phonological structure, orthographic structure, the mappings between orthography and phonology, vocabulary and grammar. Deficits in any of these areas can seriously interfere with children's progress and adult proficiency." (Seidenberg, 2017, p 88)

Seidenberg, M. (2017). Language at the speed of sight: how we read, why so many can't, and what can be done about it. New York: Basic Books.

Reading eventually happens in the background

"So ... [eventually] people manage to be good at reading without knowing much about how they do it. Most of what goes on in reading is subconscious: we are aware of the result of having read something that we understood it, that we found it funny, that it conveyed a fact, idea, or feeling - not the mental and neural operations that produced that outcome." (Seidenberg, 2017, p 3-4)

Seidenberg, M. (2017). Language at the speed of sight: how we read, why so many can't, and what can be done about it. New York: Basic Books.

$$
\begin{aligned}
& \text { But not from } \\
& \text { the get go ... }
\end{aligned}
$$

"Becoming virtually automatic does not happen overnight. These circuits and pathways are created through hundreds or ... thousands of exposures to letters and words." (Wolf, 2008, p 14)

Wolf, M. (2008). Proust and the squid: the story and science of the reading brain. Cambridge: Icon Books.

Wise Younger, J., Tucker-Drob, E., \& Booth, J. R. (2017). Longitudinal changes in reading network connectivity related to skill improvement. Neurolmage, 158(February), 90-98. http://doi.org/10.1016/j.neuroimage.2017.06.044

The Dorsal-Ventral Shift Hypothesis

[The Dorsal-Ventral Shift Hypothesis] proposes that there is a developmental shift from a reliance on "sounding out", implicated in sound-symbol matching, to rapid word recognition, implicated in automatic recall of familiar vocabulary. (Wise Younger, 2017, Pugh et al., 2001).

Pugh, K.R., Mencl, W.E., Jenner, A.R., Katz, L., Frost, S.J., Lee, J.R., Shaywitz, B.A., 2001. Neurobiological studies of reading and reading disability. J. Commun. Disord. 34 (6), 479-492. http://dx.doi.org/10.1016/S0021-9924(01)00060-0.

Wise Younger, J., Tucker-Drob, E., \& Booth, J. R. (2017). Longitudinal changes in reading network connectivity related to skill improvement. Neurolmage, 158(February), 90-98. http://doi.org/10.1016/j.neuroimage.2017.06.044

The Dorsal Circuit

The dorsal, temporo-parietal circuit, including the left posterior superior temporal gyrus (L STG) and inferior parietal lobe (L IPL), is primarily involved in phonological processing and integrating visual (orthographic) and auditory (phonological) information, known as phonological decoding [or "sounding out"]. (Wise Younger et al., 2017, Pugh et al., 2001).

Pugh, K.R., Mencl, W.E., Jenner, A.R., Katz, L., Frost, S.J., Lee, J.R., Shaywitz, B.A., 2001. Neurobiological studies of reading and reading disability. J. Commun. Disord. 34 (6), 479-492. http://dx.doi.org/10.1016/S0021-9924(01)00060-0.

Wise Younger, J., Tucker-Drob, E., \& Booth, J. R. (2017). Longitudinal changes in reading network connectivity related to skill improvement. Neurolmage, 158(February), 90-98. http://doi.org/10.1016/j.neuroimage.2017.06.044

> The ventral, occipito-temporal circuit, including the fusiform gyrus (L FG) and inferior occipital gyrus (LIOG), is proposed to be critical for the fast, automatic processing of visual word forms (Pugh et al., 2001)

The ventral pathway tends to be used for words that are frequent (Coltheart, 2006; Jobard et al., 2003).

Coltheart, M., 2006. Dual route and connectionist models of reading: an overview. Lond. Rev. Educ. 4 (1), 5-17. http:// dx.doi.org/10.1080/13603110600574322.

Jobard, G., Crivello, F., Tzourio-Mazoyer, N., 2003. Evaluation of the dual route theory of reading: a metanalysis of 35 neuroimaging studies. Neurolmage 20 (2), 693-712. http://dx.doi.org/10.1016/S1053-8119(03)00343-4.

Pugh, K.R., Mencl, W.E., Jenner, A.R., Katz, L., Frost, S.J., Lee, J.R., Shaywitz, B.A., 2001. Neurobiological studies of reading and reading disability. J. Commun. Disord. 34 (6), 479-492. http://dx.doi.org/10.1016/S0021-9924(01)00060-0.

THE

The Dorsal-Ventral Shift

While both the dorsal and ventral streams are thought to be used throughout the lifespan depending on the type of word (i.e. familiar versus unfamiliar words), the dorsal-to-ventral shift hypothesis proposes that children rely more on dorsal stream processing ["sounding out"] for all word types before shifting to reliance on the ventral stream for [automatic orthographic recognition off familiar words. (Wise Younger et al., 2017, p. 91)

Wise Younger, J., Tucker-Drob, E., \& Booth, J. R. (2017). Longitudinal changes in reading network connectivity related to skill improvement. Neurolmage, 158(February), 90-98. http://doi.org/10.1016/j.neuroimage.2017.06.044

You can't skip a step, though ...

"I'm getting the hang of this!"

Strong phonological decoding skills are necessary for the development of the ventral stream for reading. Children who went on to improve their reading abilities had a sufficiently strong connection between orthographic word forms and their relationships with sounds before they made a shift away from using dorsal stream processing. (Wise Younger et al., 2017, p. 96)

Wise Younger, J., Tucker-Drob, E., \& Booth, J. R. (2017). Longitudinal changes in reading network connectivity related to skill improvement. Neurolmage, 158(February), 90-98. http://doi.org/10.1016/j.neuroimage.2017.06.044

Reading skill is related to using the 'correct' pathway for the type of word being read. (Wise Younger et al., 2017, p. 91)

"For unfamiliar and pseudo words" "sounding out"

> "For familiar words" "automatic recognition"

Wise Younger, J., Tucker-Drob, E., \& Booth, J. R. (2017). Longitudinal changes in reading network connectivity related to skill improvement. Neurolmage, 158(February), 90-98. http://doi.org/10.1016/j.neuroimage.2017.06.044

Beginning readers need to develop strong skills in developing their phonological understanding of language and their understanding of sound-letter combinations. They need plentiful opportunities to use this knowledge to recognise and construct words.

Effective readers must transition to a state whereby they are able to automatically and rapidly process words (visually) as they read fluently and with comprehension.

With experience, this system becomes more and more efficient, and language is immediately seen in the script.
9

Language

Automatic Word Recognition
$+$

Language

We experience the world as a three-dimensional space populated by objects and events because of its ... regularities. Language, like the visual world, exhibits ... regularities on many levels phonology, morphology, words, word sequences, relations between utterances and the context in which they occur, among others Every time we use language, we also update our [understanding] of it (Seidenberg, 2017, p. 102).

We speak about stuff to each other, hoping we are understood.
https://_youtu.be/_pQ33gAyhg2c

Language

30 Million WordGap

https://_youtu.be/. OJ4yNRaPx24
"From age 2 on, there exist large differences in children familiarity with unusual words, standard pronunciation, and complex syntax, a fact that was long suspected, but not well documented and quantified until the monumental research of Betty Hart and Todd Risley...." -E.D. Hirsch, Jr.

Joint Attentional Frame presents a conversation between individuals \& a mediating tool (e.g. a picture book or a garden).
I. Use everyday activities as the context for practice.
2. Vocalise thoughts and describe ongoing actions.
3. Use parallel talk to describe what others are doing.
4. Use modelling to provide practice on a specific language skill.
5. Use recasting to reframe a learner response in a more fully developed way.
6. Use expansion to demonstrate how an idea can be expressed more completely.
7. Use "build ups" and "break downs" to emphasise the components of a message.

IN SUMMARY: It is important to model the complex syntax and vocabulary diversity that we want children to develop. For older students we want to create situations that allow them to engage in complex discussion and debate.

Language

Scaffolding
 Language
 Development

Language

Phonemic
 Awareness

\{To prepare for literacy] spoken words had to be treated as consisting of component parts, which could then be represented by a much smaller number of graphical symbols. The would-be architects of writing systems had to develop something that we now consider an ordinary, teachable aspect of learning to read: phonological awareness. (Seidenberg, 2017, p. 63)

The Crux of Phonemic Awarenes

To be able to detect the sounds within words, and hold this in working memory long enough as to begin matching sounds to graphemes.

CAT

/K/

/A/

/T/

The Seven Steps to Phonemic Awareness Are

Isolating individual phonemes

Introducing letters and spelling

Please note: phonemic knowledge is the exact knowledge of the 45 possible phonemes (give or take one to two). In addition, the development of oral language skills, including vocabulary skills is an inherent precursor.

PA MILESTONES (Ages when 80-90 \% of typical students achieved a phonological skill. http://www.readingrockets.org/article/development-phonological-skills)

Noticing \& remembering separate phonemes in a series $=5.5 \mathrm{yrs}$ old Blending onset and rime $=5.5 \mathrm{yrs}$ old
Producing a rhyme $=5.5$ yrs old
Matching initial sounds; isolating an initial sound $=5.5 \mathrm{yrs}$ old
Compound word deletion $=6$ yrs old
Syllable deletion $=6$ yrs old
Blending of two and three phonemes $=6 \mathrm{yrs}$ old

Segment words w/2-3 phonemes (no blends) $=6$ yrs old Segment words $\mathrm{w} / 3-4$ phonemes ($\mathrm{w} / \mathrm{blends}$) $=6.5 \mathrm{yrs}$ old Substitute phoneme in words (no blends) $=6.5$ yrs old Sound deletion (initial and final positions) $=7 \mathrm{yrs}$ old Sound deletion (initial and final positions) $=7 \mathrm{yrs}$ old
Sound deletion (initial position, include blends) $=8 \mathrm{yrs}$ old Sound deletion (medial \& final blend positions) $=9$ yrs old

Refer to Vocabulary/Language Development for a child's development of familiar words which will be available for analysis.

https://youtu.be/PpHiXXyPzm4

Spoken words [need] to be treated as consisting of component parts ... we now consider [this] an ordinary, teachable aspect of learning to read: phonological awareness. (Seidenberg, 2017, p. 63)

Language

Phonemic
 Awareness

Phonemic
 Knowledge

/n/

Discovering phonology: Writing systems require treating spoken words as consisting of parts, which can then be represented by a limited set of graphical elements. We take it as obvious that speech consists of units such as words, syllables, and phonemes, but these units are phonological abstractions that had to be discovered. Writing in the phonological way of thinking coevolved over a long period. (Seidenberg, 2017, p. 49)

$\begin{gathered} \text { /b/ } \\ = \end{gathered}$	/ch/	／d／	／f／	$1 \mathrm{~g} /$	／h／	／j／	$1 / \mathrm{l}$ $=$	／II	／m／
／n／	／ng／	／p／	／kw／	／r／	／s／	／sh／	／zh／	／t／	／th／
E				출	\equiv	$\pm \leq$		$=$	\underline{E}
／v／	／w／	nw／	ә／	／k	／y／	／z／	a	a	е̌
		$=$	三	ks／＋sh｜	$=$	를	\pm	三찬	$\stackrel{\square}{5}$
$\overline{\text { e }}$	I		$\stackrel{\text { ¢ }}{ }$	$\bar{\square}$	ű	ū	$\bigcirc 0$	$\overline{0}$	／ow／
\cdots		喑		판	$=$	二 $=$	E	를	三
／oy／		／er／		／ar／	air／	／ear／			
$=$	＝		＝		$\stackrel{\text { E }}{ }$	\＃	\cdots	＂	\cdots

The Key Sounds of English

44 Phonemes and 4 Blends

14

https://youtu.be/xiqUVnXExTQ

The Sounds of Standard English

4

Sound Scientists

https://youtu.be/p8d1eEhH8NI

Phonemic

 Awareness

Phonemic Knowledge

Readers become orthographic experts by absorbing lots of data ... The path to
orthographic expertise begins with practice practice
practice but leads to more more more. (Seidenberg, 2017, p. 108)
"Before children attain a conventional level of spelling. ...they use what they know about the phonology and orthography to create novel forms of spelling.

These invented spellings provide a window into their developing

 awareness of the alphabetic principle." (p 77)Ouellette, G., \& Sénéchal, M. (2017). Invented spelling in kindergarten as a predictor of reading and spelling in Grade 1: A new pathway to literacy, or just the same road, less known? Developmental Psychology, 53(1), 77-88.

"The beginning reader's initial task is to learn how the spoken language they know relates to the written code they are learning." (Seidenberg, 2017, p 22)

froot $->$ frute $\rightarrow>$ fruit

Phoneme	Most likely grapheme	\%
/th/	"th" (nb: voiced \& unvoiced forms)	100\%
/hw/	"wh" as in while (must discriminate from /w/)	100\%
/ks/	"x" (but "x" can also make the $/ z /$ sound)	100\%
/kw/	"q" (but "qu" make the /k/ sound rarely)	100\%
/v/	" v " (except in "of" when the "f" makes the /v/ sound)	99.5\%
/d/	"d" (must discriminate from	98\%
/h/	"h" (but the letter appears in many phonics patterns	98\%
/b/	"b" (must discriminate from / $\mathrm{d} /$ and $/ \mathrm{p}$ /	97\%
/n/	" n " (must discriminate from $/ \mathrm{m} /$ and $/ \mathrm{ng}$ /	97\%
/r/	"r" (common words make the $/ r /$ with "wr" or "rh")	97\%
/t/	"t" (even though the "t" can make the "ch" sound)	97\%
/p/	"p" (must discriminate from /d/ and /b/)	96\%

Phoneme	Most likely grapheme	\%
/m/	" m " (must discriminate from $/ \mathrm{n} /$ and $/ \mathrm{ng}$ /)	94\%
/w/	"w" (must discriminate from /hw/)	92\%
//	"l" (but also spelled will "ll")	91\%
/g/	" g " (but also spelled will "gh" and " g " also make /j/ sound)	88\%
/f/	" f " (but also spelled will "gh" and "ph")	78\%
/k/	"c" (but the "c" also makes the $/ \mathrm{s} /$ sound)	73\%
/s/	"s" (but /s/is made by "c" 17% of the time)	73\%
/j/	" g " (even though the letter " j " is /j/ 100\% of the time)	66\%
/z/	"s" (even though the $/ \mathrm{z}$ / sound is associated with "z")	64\%
/ng/	"ng" (even though " n " is /ng/ in "think")	59\%
/y/	"i" (which is probably the biggest surprise on the list)	55\%
/ch/	"ch" (even though "t" can also make the /ch/ sound)	55\%
/sh/	" t " (is most common, though "sh" is quickest association)	53\%
/zh/	"si" (even though represented in other ways)	49\%

Wiramar Vowel Patterns

Phoneme	Most likely grapheme	$\%$
/short a/	"a" (as in cat ... with regular CVC pattern predictability)	96%
/short e/	"e" (as in pen ... with regular CVC pattern predictability)	91%
/aw/	"a" (as in father ... with more diversity than short vowels)	89%
/short u/	"u" (as in dug ... with regular CVC pattern predictability)	86%
/short o/	"o" (as in dog ... with regular CVC pattern predictability)	79%
/long o/	"o" (long vowels could be spelled with more diversity)	73%
/long e/	"e" (long vowels could be spelled with more diversity)	70%
/long u/	"u" (long vowels could be spelled with more diversity)	69%
/short i/	"i" (the /short i/ can also be spelled with "y" as in "myth")	66%
/oi/	"oi" as in "boil" with "oy" as in "boy" making another 32\%	62%
/ow/	"ou" as in "loud" with "ow" as in "cow" making 29\%	56%
/short oo/	"u" as in "put" as well as "oo" in look at 31\%	54%

Phoneme	Most likely grapheme	$\%$
/long a/	"a" (and a_e at 35\% as in "cake")	45%
/long oo/	"oo" as in boot, represented by u, o, ou, u_e, ew, ue	38%
/long i/	"i_e" as in fire and "i" as in find, also by ie, y, igh	37%
schwa	equally represented by the vowels a, e, i, o, u	$-\%$
/er/	not stated in research study	$-\%$
/ar/	not stated in research study	$-\%$
/air/	not stated in research study	$-\%$
/ear/	not stated in research study	$-\%$
/yur/	not stated in research study	$-\%$

The percentages provided are based on the number of times each sound-spelling appeared in the 17,000 most frequently used words (Hanna et al., 1966). These included multisyllabic words.

Hanna, P. R., R. E. Hodges, J. L. Hanna, and E. H. Rudolph. 1966. Phoneme-Grapheme Correspondences as Cues to Spelling Improvement. Washington, DC: U.S. Office of Education.

Analysing Spoken Words

An activity that helps learners develop their awareness of the sound patterns within familiar words (a.k.a. phonological awareness) ... and
which uses this awareness as one of the foundations for understanding the logic of the alphabetic principle.
https://youtu.be/HCvYgHk6ODc

$$
\begin{gathered}
\text { But for formal } \\
\text { study ... }
\end{gathered}
$$

There are $\mathbf{2 6}$ letters in the English alphabet.

21 are consonants;
5 are vowels (or 6 if you treat " y " as a sometimes vowel)

We use these letters as well as letter combinations to represent 44 phonemes or English sounds (give or take one or two).

25 consonant sounds
19 vowel sounds

There are $\mathbf{7 4}$ common ways to represent those 44 sounds (e.g. /oo/ as in true, new, shoe, flu)

These sounds are joined together to form words and syllables. There are six common word and syllable types in English.

Closed	This syllable ends with a consonant and contains a single following, often in its short form	mat or pic-nic or fresh (e.g CVC or CCVC)
Open	This syllable type ends with a vowel and the vowel is often long	me or ve-to
Silent e or vowel consonant e (ice)	This syllable has a silent e at the end which often signals that the vowel will be long	cape or stripe or cue
Vowel team or vowel pair	This syllable type contains two vowels that make one sound.	pain or head or toy
R-controlled vowel	This syllable contains a vowel with the letter r, and the vowel is neither short nor long.	far or ferment or torment
Consonant +le	This syllable always appears at the end of words and the consonant always goes with the -le	apple or simple or fickle

$\begin{gathered} \text { mb/ } \\ 2 y y y \end{gathered}$	Cht	1d/	If/	19/	In/	1j7	/k/	IV	\%	$\begin{aligned} & \ln / \\ & m \times m \\ & m \times m \\ & m \end{aligned}$	年g	10/	$\sqrt[c]{\text { kwol }}$	Irl	1s/	$\begin{aligned} & \text { shh } \\ & \text { misas. } \\ & =\cdots \end{aligned}$	A/			$\begin{gathered} 1 \mathrm{w} / \\ \text { misum } \\ =10 \end{gathered}$				121	a	a	e	e	i	i	\bigcirc	0	4	u	-	\pm	/aw/	Ow/	1oy	/errs	/or/	Mor	/air	earl	/yur/	schwa
b	ch-	d	\ldots	${ }^{9}$	\%	${ }^{\text {j }}$	k	1	m	n	-ng	p	qu-	r	m	sh	t	th	\checkmark	${ }^{\text {w }}$	wh	\times	y	z	a	${ }^{\text {a }}$	${ }^{\text {e }}$	e	$\stackrel{\text { i }}{ }$	\%	${ }^{\circ}$	\bigcirc	u	${ }_{0}$	${ }_{0}^{u}$	\bigcirc	${ }^{\text {a }}$	ow	${ }^{\text {oy }}$	er	or	ar	air	ear	ure	${ }^{\text {a }}$
bb ben	-tch	dd amat		$\begin{aligned} & \mathrm{gg} \\ & \hline \end{aligned}$	wh- $-$	g-	ck	$॥$		nn	n	pp		r -m	ss	ch	tt	*	$\begin{gathered} \text {-ve } \\ -\mathrm{m} \end{gathered}$	wh \ldots	*	*	1	zz	au	a_e	${ }_{\text {ea }}$	ee -	y	i_e		O_e	ou	u_e	$\stackrel{\circ}{\circ}$	\bigcirc	aw	ou	oi	ear	ore	ear		${ }^{\text {eer }}$	your	e
bh	$\stackrel{\text { t }}{+}$	-ed	ph-	gh-		-ge	c	-le	-mn	kn- -				rh	-se	${ }^{5}$	-ed	(zht	${ }_{\text {f }}$		(1)	(1/2s/t		-ze	ae	a	ie	ea		ie		oa		ew	oul	ue	a	ough		ar	oar		eir	ier	ur	${ }^{\text {i }}$
			-If	gu-		-dge	ch		-mb	gn-				wr	sc-	sci	pt-	si			-	x		s	aim	aigh	ai	e_e		igh		oe		eau	-	ou	au				our		ear			-

$\stackrel{\circ}{\mathrm{I}}$	ㅁ. 0		
(1) 0	$\bigcirc 0$	33	£ ¢
	$\underset{0}{\square} \frac{0}{0}$	\bigcirc	$\frac{\varepsilon}{3}$
$\begin{array}{\|cc\|} \hline 0 & 0 \\ \hline & 0 \end{array}$	$\sum \sum_{0}^{\infty}$	\bigcirc	$\frac{\kappa}{\kappa}$
\bigcirc	$\stackrel{\square}{\square}+\frac{0}{0}$	$\stackrel{\circ}{-}+\frac{0}{0}$	\bar{U}
$\bigcirc \cup$	\underline{v}	$\begin{array}{ll} 0 & 0 \\ \infty & i \end{array}$	
هـ م	$0 \cdot \frac{0}{0}$	0	$\begin{array}{ll} 0 & 0 \\ N & N \\ 0 & 0 \end{array}$
$\varangle 0$	$\frac{0}{0} \cdot \frac{0}{0}$	0	

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
\& b \\
\& b=0 \\
\& m
\end{aligned}
\] \& \(C\)
\(=\)
\(=0\)
\(=\) \& \[
\mathrm{d}
\]
\[
\stackrel{\text { ed is } / d / \text { as in moved }}{- \text { ed is } s / t \text { a } \mathrm{sin} \text { jumped }}
\] \& \& 0 \& (\(\begin{gathered}h \\ \cdots\end{gathered}\) \& j \& \& \& \begin{tabular}{l}
\(a\) \\
\hdashline\(=\) \\
\(\square\)
\end{tabular} \& \(\qquad\) \& i \& 0 \& \begin{tabular}{c}
\(u\) \\
0 \\
\hline
\end{tabular} \& \(y\)
\(y\)
0 \& \\
\hline \& \(\frac{n}{n}\) \& \& qU-
\(=\sim\) \& \[
\begin{gathered}
r \\
2 \pm \\
\hline
\end{gathered}
\] \& S \& \& V
\(\cdots\)
\(\cdots=\)
\(\square\) \& \& a_e \& \[
\begin{aligned}
\& \text { e_e } \\
\& =a j \\
\& \vdots
\end{aligned}
\] \& i_e \& O_e \& U_e \& -ye \& \\
\hline \[
\begin{aligned}
\& \mathrm{X} \\
\& \hline
\end{aligned}
\] \& \[
\begin{aligned}
\& y \\
\& y= \\
\& y=
\end{aligned}
\] \& \[
\begin{aligned}
\& z \\
\& z= \\
\& y \\
\& y
\end{aligned}
\] \& \& -bb \& -dd \& -ff \& -99 \& \(\qquad\) \& ai
\(=0\)
\(=0\) \& ay \& aW \& aU
\(\cdots\)
\(\cdots\) \& al

\square \& aigh \& augh

\hline $$
\begin{aligned}
& -\mathrm{mm} \\
& \mathrm{w}= \\
& \hline
\end{aligned}
$$ \& \[

\frac{-n n}{20}

\] \& \[

-\mathrm{pp}
\] \& -rr

$\stackrel{3}{2}=$
$=$ \& \& \& \& \& sh \& \& \& air
\cdots
$=\sim$ \& \& ea \& el \& ey

\hline th \& wh$\underset{\substack{\text { whare } \\ \text { whis } / \text { / } / \text { in whole } \\ \text { whis } \\ \text { whis } / \text { hhw } \\ \text { in while }}}{ }$ \& -ng \& -ck
$=$ \& -tch \& \& Ph- \& -If \& -gh \& eigh \& \& er
\cdots
\cdots
$=\sim$

$=\sim$ \& $$
\begin{gathered}
\text { ear } \\
=\approx=
\end{gathered}
$$ \& eer \& ie \&

\hline gh- \& \& \& -dge \& \& $\mathrm{kn}-$
$=$
$=$ \& -que \& $\underline{-m n}$ \& $-m b$
$\square=$ \& ir \& \& \& oe
\cdots
\cdots \& 00 \& OU \&

\hline \& rh
\cdots
$=\sim$ \& $\stackrel{W r}{w}=$ \& SC
0

\square \& ${ }^{\text {SCi }}$ \& \& \& \& \& \& OW \& | OY |
| :--- |
| $\stackrel{m}{ }$ | \& Oi \& \& \&

\hline ps$=$ \& sch \& shi \& +i- \& \& \& $\underline{\mathrm{i}}$ \& | -ze |
| :--- |
| $=\mathrm{za}$ | \& -Se \& Oar

\cdots

\square \& \& \& ue \& -UY \& \& -ure

\hline
\end{tabular}

Over time, we learn to combine elements to form words.

$\frac{b}{2}$	$\left(\begin{array}{c} c \\ = \end{array}\right.$	d aima $=0$		－ack			$\xrightarrow{- \text { ane }}$	$\begin{aligned} & - \text { ain } \\ & \text { sitwown } \end{aligned}$		$\begin{gathered} \text {-ail } \\ \text { sas } \\ \hline \end{gathered}$		
$\frac{9}{2}$	$\begin{gathered} \mathrm{h} \\ \hline ⿲ 二 丨 匕 刂 灬 \\ \hline \end{gathered}$	$\frac{j}{\square}$	k	$\begin{aligned} & \text {-ate } \\ & s=+w \\ & \hline \end{aligned}$	－ame	-ap	\|-ape	-ash	\|	-ank		－aw
$\begin{gathered} 1 \\ \frac{1}{2}=2 \\ 2 \end{gathered}$	\underline{m}	\cdots	P \cdots \cdots $=\sim$	$\xrightarrow{-a y}$	$\\| \begin{array}{ll} -\mathrm{eec} \\ \cos \\ \hline 10 \end{array}$	-est	$\begin{gathered} - \text { ell } \\ \substack{x \\ \hline} \\ \hline \end{gathered}$	$\begin{aligned} & \text { eed } \\ & \text { setat } \\ & \hline \end{aligned}$	-en			
$\begin{aligned} & q u- \\ & = \end{aligned}$	$\stackrel{r}{\square}$	\cdots		－ice	$\xrightarrow{\text {－it }}$			$\begin{aligned} & \text {-ip } \\ & \substack{\text { in+ }+\infty \\ \hline} \end{aligned}$	$\begin{aligned} & \text {-ig } \\ & \text { ritate } \\ & \hline \end{aligned}$	$\begin{gathered} -\mathrm{in} \\ \substack{x+1+w \\ \hline ⿲ 二 丨 匕 刂 灬} \\ \hline \end{gathered}$	－ine	
$\begin{aligned} & v \\ & = \\ & \hline \end{aligned}$	W \cdots 		y $=$ $=$	－ink	$\begin{aligned} & \text {-ide } \\ & i n+k+u \\ & \hline \end{aligned}$	$\\| \begin{aligned} & \text { OOck } \\ & c_{18} \end{aligned}$		-Ot		$\mid-\infty$	$\left\lvert\, \begin{array}{\|c\|c\|c\|c\|c\|c\|} \hline-\mathrm{OON} \\ \hline \end{array}\right.$	
$\frac{\mathrm{z}}{2}$	$\begin{aligned} & \mathrm{ch} \\ & y_{2}^{2} \\ & \hline \end{aligned}$	$\xrightarrow{\text { sh }}$	\pm	－ore	$\xrightarrow{-09}$	$\xrightarrow{-\mathrm{Op}}$	－unk $\xrightarrow{2 \pi+1 N+N}$	－ump	$\begin{gathered} \text {-ut } \\ \substack{\text { ctiven } \\ \hline} \\ \hline \end{gathered}$	－Ug	\pm	

We learn about word patterns

m^{s}	CVC words
d n	pin mat
i^{p}	sap sip short vowel
ay	CVVC words
ee	day boil
ea	tree
	bread

CVCe words

$\mathrm{pin} \longrightarrow \mathrm{pine}$
$\mathrm{mat} \longrightarrow \mathrm{mate}$
short vowel
long vowel
Multisyllabic words
hotdog before
bottle helicopter banana

Letter-Name Alphabetic (4 to 7 years old)

Spell it how it sounds
The single-syllable, CVC form is the easiest way for learners to master consonants sounds, consonant digraphs, consonant blends, the short form of the vowels and simple r-controlled vowels.

Consonant - cat, bed, pig, sun, bot, bog, gig, bib, quit
Digraph - with, chat, ship, fish, mush
Blends - plan, flag,
r-controlled vowels - car, far, fir, stir, star, blur,
NB: the short form of each vowel (a, e, i, o, u) is only represented
by a small number of spelling options ... unlike the long form $->$

10-13: use many strategies / 13+: spell from knowledge At this stage, there are few items which are missing from one's skill set. Instead, spelling \& vocabulary learning are inextricable linked.

Within-Word Pattern (7 to 9 Years old)

Spell it by pattern
Once a learner has mastered the CVC pattern, it is time to contrast the short vowel sounds with long vowel sound.

Once this contrast is developing, learners explore the various diphthong forms and diverse vowel sounds in single-syllable words, such as bright. Learners also explore plurals, contractions, homophones, homographs and compound words.

Learners clarify spelling patterns with the help of dictionary aids

Six Most Common Syllable Patterns		
Closed	This syllable ends with a consonant and contains a single following, often in its short form	mat or pic-nic or fresh (e.g CVC or CCVC)
Open	This syllable type ends with a vowel and the vowel is often long	me or ve-to
Silent e or vowel consonant e (ice)	This syllable has a silent e at the end which often signals that the vowel will be long	cape or stripe or cue
Vowel team or vowel pair	This syllable type contains two vowels that make one sound.	pain or head or toy
R-controlled vowel	This syllable contains a vowel with the letter r, and the vowel is neither short nor long.	far or ferment or torment
Consonant + le	This syllable always appears at the end of words and the consonant always goes with the -le	apple or simple
or fickle		

END NOTE: As encoding and decoding skills become automatic, there is a gradual shift in the treatment of literacy. There is a shift away from encoding/decoding and toward composition/comprehension. Consequently, teachers assume that learners have the skills to create and consume texts. There is now an onus on conveying and extracting meaning and intentions through text. For instance, it is assumed that one can read the text [government form], but does one know what its means in context?)

hop \longrightarrow hopping
 cvc

 hope \longrightarrow hoping

 hope \longrightarrow hoping
 CVCe

Adding_ed

$$
\begin{aligned}
& \underset{\text { bat }}{\text { bvc }} \mathrm{cva} \\
& \underset{\text { look }}{\text { loovc }}
\end{aligned} \longrightarrow \text { looked }
$$

"Not caring, not feeling"

"A love for humankind; generosity"

Common Prefixes

Un-			dis-			Uni-	bi-
	sub-	$\mid \text { POSt- }$	mis- \qquad \qquad	non-	mal-	anti-	inter-
$\begin{aligned} & \text { intra- } \\ & =- \end{aligned}$	super-	fore-	Pro-	quad-		multi-	
dys- m,		ambi- both	$\mathrm{CO}_{\substack{\text { CO}}}$	dia-	Con-	Poly-	Mono-

Common Suffixes

-S \cdots $=$	-es	\square	$\begin{aligned} & -\mathrm{ing} \\ & = \\ & = \end{aligned}$		-able	-ful	-tion
$\begin{gathered} - \text { ness } \\ n_{2}^{\prime \cdots}=\mathbf{w} \\ \hline \end{gathered}$	-less	-OUS	-ive	-ish	-ship		
	-†y	-ist $=-$	- sion \square \square	-fy	-y		

Common Greek/Latin Rootes

	$\underline{\text { agr- }}$	anthro \square $=$	aqu- $- \pm$ $- \pm$	arch- $=$ $=$	auto- \square $=$	ben-	bibli-
bio-	carn- \sim \sim	cent-	cert- $=$	Chrom-	chron-	circ-	cog-
$\begin{aligned} & \text { contra- } \\ & 3: y \end{aligned}$			cred-	cryptan mimo	ego-	equi-	fid-
$\begin{aligned} & \text { geo- } \\ & = \\ & = \end{aligned}$	graph- $y=-$ $=$	hetero miswis $=$		hydr-	hyper- $=2$		
lingu-		macro-	man-			morph- $=$ $=$ $=$	omni- 为 $=$
Pan- $=\sim$ $=\sim$	path\pm	Phil-	Phon-	Phot-			$\begin{aligned} & \text { psych- } \\ & 2 \end{aligned}$
	Stell-		†el-	term-	therm-	vac-	

Morphemes - the smallest, meaningful units within a word

Phonemic

 Knowledge
/n/

Language

Bringing print and speech into alignment makes reading feasible.
(Seidenberg, 2017, p. 40)
Automatic Word Recognition

What words do learners learn to use, read and spell?
common,
familiar vocabulary

NB: At age six, a child may know thousands of words when heard but few in print.

Despite this, a word which is familiar to a learner may be easier to read and spell as the learner call upon both his/her semantic and phonetic systems to recall the word.

These words are often called upon in phonics studied so students can generalise where patterns can be found.
high frequency words

Some words - like "no" - are recognised prior to any phonetic instruction.

Other words - like
"was" - are both ubiquitous and irregular, and are often taught by sight rather than analysis.

When referring to high frequency words, we use lists like Dolche or Fry.

As with common vocabulary, these words are open to analysis when the time comes, so students can generalise where patterns can be found.
print words encountered in books and the environment

One of the best sources of print vocabulary is through environmental scans and book reading.

In an environmental scan a child may recognise the word "STOP" in a sign and - then - in isolation well before having the skills to decode the word.

It goes without saying that book reading is important, both at the beginning and throughout one's reading life.
Reading connected texts help learners apply word reading skills and semantic problem solving strategies.
topical words being studied (e.g. at school)

Still other words are studied as part of exploring "content", such as "breakfast words" or "dinosaurs" or "art instruments"

As with common vocabulary, a child can know a word when heard but lack the skills to decode it independently.

That said, having access to the word's meaning may provide the incentive for the child to persevere in order to work out its pronunciation and spelling.
words based on progressive patterns in phonics program

Now we get to the
"evidence-based" practice, which is found to be effective for a wide range of children ... a progressive program in which learners develop the skills to blend, segment and decode increasingly complex graphemes, phonograms and words.

A learner can call upon his/her wide knowledge of print words to help generalise the patterns being explored in the sequenced, synthetic phonics program.

NB: Please do not underestimate a leaner's invented spellings. They reveal the patterns which have been mastered and those which are to come.

Fry's First 100 Words + A Few Other Relevant Words

$\frac{a}{}$	about ${ }^{\circ}$	after	again	all	an ${ }^{\text {a }}$	and ${ }^{\text {a }}$	any	are ${ }_{\text {a }}$	as ${ }^{\text {asemen }}$	at ${ }_{\text {a }}$	
		butnetmemer	boy	bug ${ }^{\text {¢ }}$		by	can	Chin ${ }^{\text {a }}$	come	day	
	dosment	eat	\cdots	边	$\operatorname{fun}^{(1, t)}$	get	give ${ }_{\substack{\text { g }}}^{\text {givemy }}$	go	边	grin	- had ${ }^{\text {a }}$
			her ${ }^{\text {cosem }}$	\pm	$\lim _{\substack{\text { mitamutw } \\ \\ 0}}$	his ${ }_{\text {a }}$	hop ${ }_{\text {a }}$			it ${ }_{\text {it }}^{\substack{\text { in }}}$	in^{0}
	it 0	its	just ${ }^{\text {jober }}$	${ }_{\text {know }}$	like ${ }_{\text {coser }}$	little	long	make	man^{0}	${ }^{6}$ many ${ }^{\circ}$	$\operatorname{map}^{\text {o }}$
	much muct	my	$\operatorname{la}^{\text {nex, }}$	new	no		of	Old	On	one	- or
nsminumer ten	Our	Out	pull	put ${ }_{\text {prem }}$	quit	rock ${ }^{\text {a }}$	sad ${ }^{\text {a }}$	said	See	she	50 ${ }_{\text {cosem }}$
sock	Some	sun ${ }^{\text {a }}$	${ }^{\text {take }}$	\pm	the	their	them			they	thin 9
this	three	to ${ }_{\text {to }}$	top ${ }_{\text {comem }}$	two	up^{0}		${ }^{\text {very }}$	was ${ }_{\text {w }}$	we ${ }_{\text {w }}$	${ }^{\text {c well }}$ (${ }^{\text {a }}$	went ${ }^{\text {w }}$
	what \qquad		${ }^{\text {Which }}$	$\underbrace{\text { who }}$		$\min ^{\text {win }}$	${ }^{\text {with }}$	${ }^{\text {work }}$	${ }^{\text {Would }}$	${ }^{\text {you }}$	$\underbrace{\text { your }}$

Fry's Second 100 Words + A Few Other Relevant Words

also	am	another	away		ball	because	${ }^{\text {best }}$	${ }^{\text {better }}$	big	${ }^{\text {black }}$	
	${ }^{\text {box }}$	break	brung	$\underbrace{\substack{\text { call } \\-3 y \\=0}}$	${ }^{\text {came }}$		${ }^{\substack{\text { could } \\ \\ 0 \\ \square \\ \square}}$	dear	0		${ }^{\text {drink }}$
each	-	$\underline{ }$	\pm	find			${ }^{\text {a found }}$	\cdots	\%	$\stackrel{\text { girl }}{\substack{\text { gimem }}}$	g
$\begin{aligned} & \text { got } \\ & =w \\ & \hline \end{aligned}$	\pm			-	home		${ }^{\text {hurt }}$	\%	kick ${ }_{\text {cosem }}$	kind	last
${ }^{{ }^{\text {laugh }}}$	leave		\pm					\cdots	may	men	more
morning	,um	mother	$\stackrel{\text { must }}{\ldots}$	name	near	${ }^{\text {never }}$	5		only	a	
	people		\pm		present	$=$			$\begin{gathered} \text { red } \\ =u \\ = \\ \hline \end{gathered}$	right	road
$\begin{gathered} \text { run } \\ \cdots \\ y \end{gathered}$	Safe ${ }^{\text {cowem }}$		$\begin{array}{r} \text { say } \\ =2 \\ \hline \end{array}$	$\xrightarrow{\text { School }}$	seem	shall \qquad	should	sick	smile	snack	snake
${ }^{\text {soon }}$	Stand	${ }^{\text {such }}$	Sure	\bigcirc	than		thing	think			under $=$
\square	upon		want	way	week	where $=$		white	why	$\int \begin{aligned} & \text { wish } \\ & = \\ & = \end{aligned}$	year

Fry's Third 100 Words + A Few Other Relevant Words

	always	anything	around	ask	\square	bed	brother	${ }^{\text {brown }}$	$\xrightarrow{\text { buy }}$		$\sqrt{\text { carry }}$
		clothe -	$\stackrel{{ }^{\text {coat }}}{ }$	$\stackrel{\text { cold }}{\stackrel{\text { cow }}{ \pm} \mathrm{m}}$	\bigcirc	didn't		dog	${ }^{\text {don't }}$	door	dream
	early	\pm	\pm	eyes	\cdots	$\underline{4}$	\%	\ldots	\pm	fine	r^{2}
$=$	mommen			full	${ }^{\text {funny }}$		gave	边	5	\%	hat
happy	hard	head	mean	$\xrightarrow{\text { help }}$	hold	hope		-	$\stackrel{\text { jump }}{\sim}$		letter
longer	love	,mmenmex		0	nervous	nothing	${ }^{\text {now }}$now 	O'clock	\bigcirc	${ }^{\text {once }}$	
outside ${ }^{\circ}$ \square	${ }_{\text {pair }}^{\text {pair }}$		phone ${ }^{\circ}$	quick	$\frac{\text { quite }}{}{ }^{\text {q/ww }}$		${ }^{\text {round }}$	same	sat	second	set
$\begin{array}{r} { }^{\text {s. seven }} \\ w \\ m \end{array}$,-mb		5	${ }^{\circ}$ sleep		smell ${ }^{\text {a }}$	something	$\begin{aligned} & \text { start } \\ & -v=v \end{aligned}$	
	taste	ten		third		though	today	$\int=$	took	town	turn
	$1+$	$\begin{gathered} \text { walk } \\ \sim \end{gathered}$	warm	$\begin{aligned} & \begin{array}{l} \text { wash } \\ w \\ w \end{array} \\ & \hline \end{aligned}$	water \square	window	Woman		yellow yelowm $=$	yes	yesterday

... And organising words into rich sentences

The Prime Minister released a policy to the Parliiament yesterday, because he wanted to address the problem of littering.

You can switch the sentence order but you still ask similar questions

Because he wanted to address the problem of littering, the Prime Minister yesterday released a policy to Parliament

Structures

In traditional grammar, there are four types of sentences:
Declarative - are statements that consist of a subject and a predict to make a claim on the world

Interrogative - are questions that includes some form of who, what, where, when or how.

Imperative - are commands, such as "close the door" or "describe the experiment". The subject of the sentence is the implied "you" (e.g. [you] close the door). You will notice that essay "questions" are not really question. They are commands, such "analyse the poem".

Exclamatory - are exclamation and are set apart by their emphatic tone, such as "He is alive!"

In traditional grammar, there are four structures for declarative sentences:

Simple - consist of one independent clause made up of a subject and predicate, such as "Mr Williams walked across the road."

Compound - consist of at least two independent clauses that are joined by a conjunction, such as "Mr Williams walked across the road, and Mr Black followed him.

Complex - consist of at least one independent clauses with at least one dependent clause, such as "Mr Williams, who is my English teacher, walked across the road."

Compound-Complex - consist of at least two independent that are joined by a conjunction and which include at least one dependent clause, such as "Mr Williams, who is my English teacher, walked across the road, and Mr Black followed him."

In traditional grammar, there are four three elements in a sentence:

Words - self-explanatory

Phrases - a group of words which serve the function of a grammatical category, such as prepositional phrase or a noun phrase like "the red car"

Clause - consists of a subject and predicate. An independent clause is a simple sentences, and a dependent clause is a clause that starts with a relative pronounce that links to an independent clause

Types of Words/Phrases

In traditional grammar, there open classes of words and closed classes of words. Open classes grow as the language grows. Closed classes are finite. The follows are CLOSED CLASSES

Articles- including words like the, a, and $a n$
Pronouns - including common pronouns, like I, you, they, we, as well as possessive pronouns like mine, yours, my, their, as well as relative pronouns like that, which, whose

Prepositions - include all words that indicate position such as on, next to, above, before, below, beside, through. In school, I was told that a preposition was anything you do with a cloud, such as going through a cloud, below a cloud, above a cloud, beneath a cloud.

Conjunctions - are joining words such as and, but, because, or, if, meanwhile, therefore, etc.

OPEN CLASSES include:

Nouns - refers to "things" both concrete items and abstract ones like chair, emu, rock, girl, freedom, sadness

Verbs - refers to actions (both concrete items and abstract actions) like jumping, running, stirring, thinking, feeling, resenting

Adjectives - words that describe a noun, such as red, deep, beautiful
Adverbs - words that describe an action, such as slowly, quickly, thoroughly, falsely

A phrase might consist of multiple types of words, but its main focus on a particular grammatical function.

Noun phrase - "the red car" describe a thing (the car)
Verb phrase - walked slowly and carefully describes the action (walking

Prepositional phrase - "on the pine needle floor on the forest" describes the position of events.

Adjectival phrase - "red as the dawn of the day" collectively provides a description.

Ultimately, we arrange the words and phrases to make statement about the world. We use many types of words. Some hold deep meaning, and others are more functional in nature.

Some sentences do not comply with the traditional logical order of actor-action-consequence. In particular, there are times when the object of an action becomes the grammatical subject of a sentence. This is known as the passive voice, as illustrated below:

Active - "The boy kicked the ball."
Passive - "The ball was kicked by the boy."
At first, English language learners may struggle with the passive voice; that is, they struggle until this pattern is pointed out to them.

The indirect form is also a unique sentence structure, which is encountered regularly.

Direct - "The president lied to Congress"
Indirect - "It is believed that the president lied to Congress." or "Mr Brown said that the president lied to Congress."

A statement of fact becomes something much more subjective.
Whilst there are many ways to add meaning to a sentence, the following are three categories which might help analysis:

Horizontal - involves adding elements to a sentence in order to expand meaning. For instance, "The car has a dent in it." can become "The red car that is parked on the sidewalk has a large dent on the bonnet."

Vertical - involves selecting a more specific or apt word in order to convey more exact or deeper meaning. For instance, "The red sedan that is perched on the siderwalk has a large dent on the bonnet."

Conventional (Rhetorical) - involves some conventional stylistic element of which the audience is familiar. For instance, "Aghast! You won't believe what I saw. I just saw a red sedan perched on the sidewalk in front of Gary's house. It has a large dent in its bonnet, probably from hitting a tree or something."

A sentence expresses a sense and a meaning. In concrete sentences, the sense is often clear enough; however, the meaning is caught up in the speaker and listener's assessment of the context and intention of the utterance. Consequently, one requires much more than formal proficiency to understand a sentence. That said, an understanding of grammatical convention doesn't hurt. For further insights, please visit: https://www.theliteracybug.com/ commanding-sentences. Please explore and enjoy
 \title{
For more detailsa related presentation
}
 \title{
For more detailsa related presentation
}

The Sentence

Types, Features and Structures

[^0]http://bit.ly/2-The-Sentence

We want learners to rapidly and unconsciously see language through the code ...
... and to use code-based skills to be able to read and access new words and language.
... we want fluency to reach such a stage so learners can attend to the often more difficult tasks of composing and comprehending messages.

Wirear vic Monitoring_Growth in Key Areas

1. Oral Language (including syntactic competence)
2. Cognitive capacity (e.g. memory, sequencing)
3. Phonological processing and phonemic awareness
4. Alphabetic knowledge
5. Decoding (reading) skills
6. Encoding (spelling) skills
7. Vocabulary development
8. Fluency (reading connected text)
9. Comprehension

Foundation of literacy (sounds, words, discourse)
Ability to process information and learn

Ability to detect patterns in spoken words, including the ability to detect individual sounds

Grasp the concepts that letters represent sounds

Ability to "read" an increasing corpus of words
Ability to spell an increasing corpus of word

Develop breadth and depth of vocabulary

Read with accuracy, speed and expressiveness

Ability to understand and interpret written material
(a) talk regularly with learners (for oral language development, for shaping discourse, and for fostering verbal reasoning);
(b) read to learners, read with learners, and help learners read on their own;
(c) write for learners (e.g from dictation), write with learners (e.g. joint construction), and help learners write on their own;
(d) help learners develop skills (phonological awareness, decoding/spelling vocabulary, grammar, fluency, etc);
(e) help them build knowledge and the strategies to build knowledge; and
(f) help learners be active in the ways that language and literacy are used as tools for understanding and action.

Pinnell, G. S., \& Fountas, I. C. (1997). Help America Read: A Handbook for Volunteers. Portsmouth: Heinemann.

IHE LITERCCY BUG Objectives (revisited).

- To illustrate why learners must develop an understanding of patterns in their own speech (e.g. phonemic awareness) in order to reliably recognise sound-letter patterns and understand how words work;
- To outline key elements of "the code", such as phonemic awareness, phonemic knowledge, letter-sound correspondence, orthographic patterns, morphological patterns and automatic word recognition and construction skills;
- To emphasise the ultimate goal: for learners to execute the code and word recognition with sufficient automaticity so as to facilitate more complex acts of comprehension and composition; and
- To understand that language skills, such as vocabulary and syntactic competence, become stronger predictors of reading comprehension as word reading skills are consolidated.

Slides Available for Download at:

https://www.theliteracybug.com/s/Mastering-the-Code.pdf

www.theliteracybug.com

info@theliteracybug.com

www.youtube.com/c/Theliteracybugnetwork

Twitter: @theliteracybug

[^0]:

